Symmetric spaces of higher rank do not admit differentiable compactifications
نویسندگان
چکیده
Any nonpositively curved symmetric space admits a topological compactification, namely the Hadamard compactification. For rank 1 spaces, this topological compactification can be endowed with a differentiable structure such that the action of the isometry group is differentiable. Moreover, the restriction of the action on the boundary leads to a flat model for some geometry (conformal, CR or quaternionic CR depending of the space). One can ask whether such a differentiable compactification exists for higher rank spaces, hopefully leading to some knew geometry to explore. In this paper we answer negatively.
منابع مشابه
Two-orbit Manifolds with Boundary
In this article we are interested in the classification of some Lie group actions on differentiable manifolds. In full generality, classifying all actions of Lie groups is of course an unachievable task. Let us consider the case when there are very few orbits. The case of transitive actions is easily dealt with: the manifold is then a homogeneous space, and it is sufficient to give the stabiliz...
متن کاملCompactifications of Moduli Spaces Inspired by Mirror Symmetry
The study of moduli spaces by means of the period mapping has found its greatest success for moduli spaces of varieties with trivial canonical bundle, or more generally, varieties with Kodaira dimension zero. Now these moduli spaces play a pivotal rôle in the classification theory of algebraic varieties, since varieties with nonnegative Kodaira dimension which are not of general type admit bira...
متن کاملFundamental Classes Not Representable by Products
We prove that rationally essential manifolds with suitably large fundamental groups do not admit any maps of non-zero degree from products of closed manifolds of positive dimension. Particular examples include all manifolds of non-positive sectional curvature of rank one and all irreducible locally symmetric spaces of non-compact type. For closed manifolds from certain classes, say non-positive...
متن کاملOn Formality of Generalised Symmetric Spaces
We prove that all generalised symmetric spaces of compact simple Lie groups are formal in the sense of Sullivan. Nevertheless, many of them, including all the non-symmetric flag manifolds, do not admit Riemannian metrics for which all products of harmonic forms are harmonic.
متن کاملOn One Family of 13-dimensional Closed Riemannian Positively Curved Manifolds
In the present paper we describe one family of closed Riemannian manifolds with positive sectional curvature. Now the list of known examples is not large (for instance, all known manifolds with dimension > 24 are diffeomorphic to compact rank one symmetric spaces) (we restrict ourselves only by pointing out simply connected manifolds) : 1) Berger described all normally homogeneous closed positi...
متن کامل